ИНФОРМАЦИЯ О ПРОДУКТЕ

Cmp. 1 us 2

RENOLIN UNISYN OL

Серия синтетических масел для компрессоров и гидросистем

Описание

Минеральные масла классов VB, VBL, VC, VCL и VDL по DIN 51 506 должны выполнять требования, обусловленные конструкцией компрессора. Они работают в компрессорах, где сжатый воздух не охлаждается впрыскиваемым маслом (поршневые, ротационные лопастные компрессоры и т.д.). Эти требования не могут быть перенесены на винтовые компрессоры с системой впрыска. Такие компрессоры все более популярны из-за своей надёжности, однако требуют масел, отвечающих специальным требованиям.

Наиболее важными функциями масел для винтовых компрессоров являются:

- * Охлаждение сжатого воздуха
- * Смазывание подшипников
- * Уплотнение камер
- * Защита от коррозии
- * Снижение шума
- * Защита от образования отложений

По сравнению с минеральными маслами, продукты на основе ПАО, как RENOLIN UNISYN OL, имеют ряд неоспоримых преимуществ, и все более популярны при выборе масел для винтовых компрессоров с системой впрыска.

Продукты классов вязкости ISO 100 и 150 предназначены для поршневых и многосекционных компрессоров. Их применение особенно целесообразно в компрессорах, длительно работающих с максимальной нагрузкой, и позволяет избежать таких проблем, как коксование масла и образование высокотемпературных отложений.

Масла серии RENOLIN UNISYN OL, кроме того, надёжно защищают от износа и обеспечивает длительный срок службы гидравлического оборудования. Стандартный тест на лопастном гидравлическом насосе Vickers V-105C, проведённый в независимом институте RWTÜV, Эссен, показал отличные результаты. Благодаря естественно высокому индексу вязкости и исключительным низкотемпературным свойствам, особый экономический эффект достигается на оборудовании, эксплуатирующемся в условиях сильных колебаний температур и/или в условиях крайне низких температур.

Применение

RENOLIN UNISYN OL 32, 46 и 68 применяются в винтовых компрессорах, где винтовая пара работает в масле, или с системой впрыска масла.

RENOLIN UNISYN OL 100 и 150 применяются в поршневых и многосекционных компрессорах.

RENOLIN UNISYN OL также применяются в нагруженных гидросистемах промышленного и транспортного исполнения, когда производителем предписана рабочая жидкость с хорошим водоотделением.

Полиальфаолефины и, соответственно, масла на их основе совместимы и смешиваются с маслами на минеральной основе в любых пропорциях. Совместимость полиальфаолефинов с обычными конструкционными материалами, уплотнениями и красками аналогична маслам на минеральной основе. Таким образом, переход на RENOLIN UNISYN OL очень прост и не требует предварительной полной промывки системы.

По сравнению с минеральными продуктами, RENOLIN UNISYN OL обеспечивают бо́льшие интервалы замены, значительно надёжнее в эксплуатации и позволяют существенно снизить время простоев оборудования.

Спецификации

VDL DIN 51 506

HVLP DIN 51 524 часть 3

ИНФОРМАЦИЯ О ПРОДУКТЕ

Cmp. 2 us 2

RENOLIN UNISYN OL

Типовые характеристики

		32	46	68	100	150	
Параметр	Е∂.						<i>Метод</i>
Цвет		0	0	0	0,5	0,5	DIN ISO 2049
Вязкость при 0 °С при 40 °С при 100 °С	мм ² /с мм ² /с мм ² /с	240 31 5,9	410 46 7,8	705 68 10,6	100 14,4	150 19,4	DIN 51 550 и DIN 51 562-1
Индекс вязкости		139	139	144	148	148	DIN ISO 2909
Плотность, 15℃	кг/м ³	832	837	840	845	849	DIN 51 757
Температура вспышки, ОТ	C	240	260	265	250	250	DIN ISO 2592
Температура застывания	C	<-60	<-60	<-60	-60	-57	DIN ISO 3016
Коррозия медной пластины	баллы	1-100 A3	1-100 A3	1-100 A3	1-100 A3	1-100 A3	DIN EN ISO 2160
Коррозия стали	баллы	0-A 0-B	0-A 0-B	0-A 0-B	0-A 0-B	0-A 0-B	DIN 51 585 DIN 51 585
Кислотное число	мгКОН/г	0,1	0,1	0,1	0,5	0,6	DIN 51 558-1
Отделение воды при 54℃	МИН	10	10	15			DIN 51 599
Отделение воды при 82℃	МИН				5	5	DIN 51 599
Отделение воздуха при 50℃	МИН	1	2	5	9	14	DIN 51 381
Антипенные свойства, I: 24℃ II: 93.5℃ III: 24℃ после II	мл мл мл	0/0 0/0 0/0	0/0 0/0 0/0	0/0 20/0 0/0	0/0 5/0 0/0	0/0 5/0 0/0	ASTM D 892
Зольность сульфатная	% масс.	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	DIN 51 575
Тест на лопастном насосе Vickers потеря массы кольцо потеря массы лопасть	MГ MГ	pass pass	11 7	pass pass	Не опр.	Не опр.	DIN 51 389-2
Коксуемость по Конрадсону: Норм. окисление Окисление в присут. Fe	% %	0,02 0,4	0,02 0,4	0,02 0,4	0,02 0,4	0,02 0,4	DIN 51 352-1 DIN 51 352-2
Мех. стабильность (Bosch), отн. потеря вязкости,100℃, после 250 циклов	%	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	DIN 51 382
FE8 тест на подшипнике качения, износ тела качения	МГ			7,8			DIN 51 819
FZG тест, нагрузка разрушения	ступень	> 12	> 12	> 12	> 12	> 12	DIN 51 354-2